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Image Classification

» A core task in Computer Vision

(assume given a set of labels)

Trained kernels are powering the network eyl ol g b

« Add aregression branch to the classifcation

network and you have a object detection
network.

- % cat

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Pixel Space

 "Global” class-wise kernels is not that versatile
* Weak generalization
* No domain

B

»  Class
scores

f(x) = Wx

plane _Gr == trd at doer
EEEN
A

dog

frog rorse <hip ek
E n . : E ‘
e S e

Global Kernels

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Image Features

* Another approach:
* Image Features

e Classification f(X) = WX
’ ObJeCt Features . —’JL[J[:]LU.,a;],.:]t,.]p:][,ﬁJzHJ E— Class
s ObJeCt Detection AL v scores
Feature Representation

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Example:

Codebook of
Visual Patterns

Cluster patches to
Extract random " ®  form “codebook”
patches of “visual words"

Fel-Fel and Perona, “A bayeslan hierarchical model for leaming natural scene categories’, CVPR 2005

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



What if we

can learn the | (HH

features? s ]
: - - - \H I H “n HHF rlm 0

1 = ﬂ
lJD L

Then we have a unique fingerprint for each class.
|deally easy to distinguish for an MLP

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Image Features vs. ConvNets

. - . scores for classes
LUDJ[uUJwﬂlmﬁﬂ_uﬂﬂujﬂuﬂﬂwﬂgtu PO R—
training
» 10 numbers giving
scores for classes
training

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Neural Networks,

Computationally Reassource Heavy

Spatial Structure of the image is destroyed T

Locational Invariance is important
Object Detection

Pattern in feature location (classification)

Washing this out is removing information

f=We
f = Wamax(0, Wix)

Wi |h w2 |s

32%x32%x3 =3072
X

100 10

plane car berd cat deer dog frog horse ship truck
o | E' | ‘
i all e s

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao




Convolutional Neural Networks

Image Maps
Input
\ \\\\\Nutput
/\ N |:|// "
Convolutions \ Fully Connected

\
Subsampling

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Fully Connected Layer (recap)

32x32x3 Image stretched (flattened)to 3072 x1

input

Wax

pa

1| ] —>
3072

weights

10 x 3072

activation

—> 1 (O [

//' 10

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

32x32x3 image

32
height
A
== width

3
Depth

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

32x32x3 image
0|1
/ 5x5x3 filter e Convolved
Image Feature

32 “
height
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
32
— idth

w

o oso|§oé»-t
A
|§H

olol~|olo

Depth

Remember: we want to preserve spatial structure
Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

Filter always extend

32x32x3 image the full depth of the
input volume
/ Sx5x3 filter
32 “
height
I' Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
32
— width

Depth

Remember: we want to preserve spatial structure
Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

32x32x3 image

/ ~ 5x5x3 filter w
2 —
@>O\ 1 number:

the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

w |

wlz + b

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao
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Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



@
>
T
-
-
o
=
=
o
>
-
o
O

a.,., ;//

’
JAI/I h..lb- ,’/
N /Aii’

32

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

- 32x32x3 image

/ 5x5x3 filter
=
@>® convolve (slide) over all

spatial locations
I

w |

activation map

(Feature

-

£

Map)

28

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

Wl

- 32x32x3 image
__ oxb5xa3 filter

convolve (slide) over all
spatial locations

Consider the a second filter

activation maps

7

_/_A

28

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

6 activation maps,

each 1x28x28
3x32x32 image

Consider 6 filters,
/ each 3x5x5 %

.| Convolution
Layer
32 T /
A 6Xx3x5x5 alaladatad U U UYL
3 filters I I I I I I Stack activations to get a

6x28x28 output image!

iration: Justin Johnson

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer - neurons

« CONV Layers consists of neurons

arranged into a 3D Grid (28x28x6)
32 28

« There will be 6 different neurons looking

6 at the same region in the input volume

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

* Local Connectivity
* Neuronsin a layer are only connected to a
small region of the layer before it

» Share weight parameters accros spatial positions
* The same kernel (with fixed weights) is
convoled over the whole input.
» Factor in translational variance

\\//\

Feature Maps

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer

6 activation maps,
each 1x28x28

3x32x32 image Also 6-dim bias vector:
/ (11 l| [ %
___, | Convolution
Layer

32 T /
A 6Xx3x5x5 A lalalatad AU
3 filters I I I I I I Stack activations to get a
6x28x28 output image!

lide inspiration: Justin Johnson

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer - Batches

2x6x28x28
2x3x32x32 Batch of outputs

Batch of images Also 6-dim bias vector:

AA T

Convolution
Layer
32 T /
/ A 6X3X5X5 AHEHEA —'—’—‘—’—’—/_f_!_f_/_!_
o 3 filters I I I I I I

Slide inspiration: Justin Johnson . . R .
Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolution Layer - Batches

Generalized

NxC_, xH xW
NxC xHxW Batch of outputs
In

Batch of images Also C_ -dim bias vector:

Convolution
Layer

H
/ T
// - AN NNV AN
LW e xk, xK, Il“l[l[ll“ . HOLCL
- C filters out
n

Slide inspiration: Justin Johnson

S

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Convolutional Networks is a sequence
of Convolutional Layers

CONV
e.g.6

5x5x3
filters
32 28

w |
® |



Convolutional Networks is a sequence
of Convolutional Layers

CONV CONV CONV

2-95- % e.g. 10
XOoX 5x5x6
32 filters 28 filters A

w|
o

—

o



Convolutional Networks is a sequence

of Convolutional Layers

w |

32

CONV

e.g.6
5x5x3
filters

o |

28

CONV

e.g. 10
5x5x6
filters

A
I£

CONV

Rectified Linear Unit (ReLU)

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao
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What do the filters learn?

Remember: Linear Classifier - One
template/filter per class

plane

ECENE

horse truck

HENOS

"Bank” of whole-image templates

ConvNets: Learn Arbiratry Numbers of

filters

32

A

Conv

>

RelLU p»

1

28

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



What do the filters learn? - Multiple

Layers

First-layer conv filters: local image templates
ConvNets: Learn Arbiratry Numbers of (Often learns oriented edges, opposing colors)

filters n = " 'J:
Yy A - PEASEE T
¥ SENEEE=
— — == e -
T L HYNENN

h:// - ‘ :
%2 % “E

AIexNet 64 filters, each 3x11x11

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



What do the filters learn? - Multiple

Layers

. . Linearl
Low-level | Mid-level | High-level R y
> > » separable —
features features features s
classifier

VGG-16 Convi 1 VGG-16 Conv3 2 VGG-16 Conv5s_3

[Zei/er and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

Slide Credit: Fei-Fei Li, Justin Johnson




What do the filters learn? - Multiple

Layers

Note: One filter - One
activation map

SNCINSEERDNCIIAA NSO AR TSNS SRS

example 5x5 filters
(32 total)

Activations:
T —

g e \ We call the layer convolutional
Z;,g.\;*?.f‘i.f ‘ '\\ because it is related to convolution
e " = ofd H .
"‘"‘““ of two signals:
] M b >
| L0 Iw -’?‘—'7— fleylegleyl = 3 3, fla,m]-glx—n,y—m]

8 Wil -1 \'é« w

g elementwise multiplication and sum of
ey a filter and the signal (image)
e coprgh el s Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao




Network

Mechanism

Ove rV| ew RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

Pidd 44

1
]

e | -
—
=
s
|
.

VIS

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao




CNN: A closer look at spatial

dimensions

activation map

— 32x32x3 image

/ "~ 5x5x3filter
2
@>® N

convolve (slide) over all

spatial locations
/32 28

D\

w |
—



CNN: A closer look at spatial

dimensions

X7 input (spatially)
assume 3x3 filter




CNN: A closer look at spatial

dimensions

7X7 input (spatially)
assume 3x3 filter




CNN: A closer look at spatial

dimensions

X7 input (spatially)
assume 3x3 filter




CNN: A closer look at spatial

dimensions

X7 input (spatially)
assume 3x3 filter




CNN: A closer look at spatial

dimensions

7X7 input (spatially)
assume 3x3 filter

=> 5x5 output

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: A closer look at spatial

dimensions With stride

7X7 input (spatially)
assume 3x3 filter
applied with stride 2




CNN: A closer look at spatial

dimensions With stride

X7 input (spatially)
assume 3x3 filter
applied with stride 2




CNN: A closer look at spatial

dimensions With stride

X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: A closer look at spatial

dimensions With stride

X7 input (spatially)
assume 3x3 filter
applied with stride 3?




CNN: A closer look at spatial

dimensions With stride

X7 input (spatially)
assume 3x3 filter
applied with stride 3?

7 doesn’t fit!
cannot apply 3x3 filter on
X7 input with stride 3.

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: A closer look at spatial

dimensions With stride

N The nature of this mechnism with convolution is the reason
behind activation maps gets smaller and smaller

Output size:
(N - F) / stride + 1

N eg.N=7,F=3:
F stride 1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33®

Why do we even want to stride?

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: A closer look at spatial

dimensions -padding

Zero-pad is o(ojo|0|0]|O
most common
In practice

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

*  We pad all around the image to hold the translational invariance.
The image features is still relative to the original center
» Further as convolution courses the image to shrink, we add
padding so the center/ middle layers is not parsed to many
more times than the edge layers.

(recall:)
(N - F) / stride + 1

o | O | ©| O

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: A closer look at spatial

dimensions -padding

Zero-pad is

most common X ©.g. ipput o . . .
in practice 0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
0

(recall:)
(N - F) / stride + 1

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: A closer look at spatial

dimensions -padding

Zero-pad is ° e.g. input 7x7
m?nSt common 0 3x3 filter, applied with stride 1
P 0 pad with 1 pixel border => what is the output?
° 7x7 output!
0
(recall:)

(N +2P - F)/ stride + 1

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: A closer look at spatial

dimensions -padding

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

o | O | O | O| O

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F =7 => zero pad with 3

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: The Volume Shrinks

A 32x32 input convoled repeatedly with
a 5x5 filters shrinks the volume spatially
32> 2824 ...
Shrinking to fast: Not good

* But shrinking is computationally a

nice feature
 Trade off

w|

32

CONYV,
RelLU
e.g.6
5x5x3
filters

A

CONYV,
RelLU

e.g. 10
5x5x6
28 filters

o |

A
1L

24

CONYV,
RelLU

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: The Volume Shrinks, Example
Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Output volume size: ?

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: The Volume Shrinks, Example
Examples time: / /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 _/

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10



CNN: The Volume Shrinks, Example
Examples time: / /

Input volume: 32x32x

10 5x5 filters with stride 1, pad 2 _/ _/
Number of parameters in this layer?

each filter has 5*5*3 + 1 =76 params  (+1 for bias)
=>76%10 =760

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



CNN: The Volume Shrinks: 1x1

Convolution makes sense

Collabs Information Across channels/ feature

maps.
Preseves spatial features.

Pros./ cons.?

1x1 CONV
56 with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64

32

1x1 CONV
56 with 32 filters

56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

56

56

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])

C 0 N V L a y e r i n SpatialConvolution

Applies a 2D convolution over an input image composed of several input planes. The input tensorin forward(input) is
0 r C expected to be a 3D tensor ( nInputPlane x height x width ).
The parameters are the following:
« nInputPlane : The number of expected input planes in the image given into forward() .

« noutputPlane : The number of output planes the convolution layer will produce.
« kw : The kernel width of the convolution

Conv Layers needs 4 hyperparamters

« kH : The kernel height of the convolution
« dw : The step of the convolution in the width dimension. Defaultis 1 .

N um be r Of fl |te r k « dH : The step of the convolution in the height dimension. Default is 1 .

« padw : The additional zeros added per width to the input planes. Defaultis e , a good numberis (kw-1)/2 .
Th e .FI |te rs ize F « padH : The additional zeros added per height to the input planes. Default is padw , a good numberis (kH-1)/2 .

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up

Th e Str| d e S to the user to add proper padding in images.

If the input image is a 3D tensor nInputPlane x height x width , the output image size will be noutputPlane x oheight x

The zero padding P owtath where

owidth = floor((width + 2*padW - kW) / dW + 1)
oheight = floor((height + 2*padH - kH) / dH + 1)

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao




224x224x64
112x112x64

pool

e

> o 112
224 downsampling

224

Pooling Layer

» Makes the representation smaller and Y
ax
more managable

* |nvariance to small transformations
Average

» Operates over each activation map
indepently

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



P 0 0 li n g La ye r' “ Single depth slice

X 1112 4
max pool with 2x2 filters
5|6 |78 and stride 2 6 | 8
3/2(1]0 ] 3|4
112 (3| 4
¢« Max Pool
 Min Pool y

« Average Pool

* Introduces the spatial invariance (as
long we pad all around input x, y dim)

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Pooling Layer

* Assume input: Wy xH; xC

« Conv Layer needs 2 hyperparamters
* The spatial extend (filter) F
* Thestride S

* This will produce and output : W,xH, x C
* W2=(W1—F)/S+1
i H2=(H1—F)/S+1

*  Number of parameters: 0

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao



Pooling Layer vs. Stride

* The pooling layer reduces the spatial dimensions helping the computional overhead and also
forces the network to destill the “correct” information as weighted with respect to the pool-
function used (min, max, avg)

* The strides are responsible for regulating the features that could be missed while flattening the
image.
« How coarse / dominant do we accept the features to be.

* Overall they control the networks sensitivity to the features in the image.

Slide Credit: Fei-Fei Li, Yunzhu Li, Rouhan Gao
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vs. Learned +
Features Y
Convolutional filters 2
are trained in a 2N
supervised manner by
back-propagating Lagel L]
classification error
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A Common Architecture:

AlexNet

224

I‘:: ‘:.\\ >
________ EN -
\ .
e 192 192 128 2048 \ / 2048
»7 128 P — —
\" 13- 13 13
v
5| 31 AN P N R
= 3 13 I 13 dense | [dense
_____ 3
155 .
, 192 192 128 Max ] ]
L : 2048 2048
Stride Max 128 Max pooling
Uof 4 pooling pooling
3 48

dense

1000


https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

VGG-19 34-layer plain 34-layer residual
mage image image

)
Pl T

size: 224 J
3Bconv,64 |
v

pool, /2
output
ot Bl | 33 conv, 128
34 conv, 128 77 conv, 64,72 | 747 conv, 64, 12
M M v
pool, /2 pool, /2 pool, /2
output
% [30wmass ] T 33 comv, 64
[Csemxss ] _ SSwmet ] [Coseoms
3aconv, 256 | o6 | [ 3aconv64
— — Y 2
[ adcom 256 | =20 com 4"
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pool, /2 [3a3conv, 128,72
output

|
| @628 Mg 3 conv, 128
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. 3x3 conv, 512 33 conv, 128

33 conv, 128
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[33cov,128 | [(8owus |
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38w | [[3eww12s
output n ¥ ] T e
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¥ e
L L
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[3a8com.25%
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38w
3dconv, 256 | [ 33cwmw.25%
output r
ey pool, /2 (38522 | [(3acow,s12.72
. M [[3acmws2 | [[38cwmw,s2
° esNet: Residua etworks — ,
. 343 conv, 512 [(38wwsn |
[[33 w512 [[(38wwsz ]
3dconv, 512 | [ 38 cw,s12
M conv, 512 | [[38cwmw,512
output -
e c 4096 avg pool avg pool
1c 4096 e ] [ fc 1000
[0

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.



Beyond
Classification

Detection
Segmentation
Regression
Pose estimation

Matching patches

Synthesis

and many more...




Deep Neural

Networks:
CNNs

Feature maps

Spatial pooling

Non-linearity

Convolution
(Learned)

Input Image




